The “Cure Vision” Restoration Research Team are exploring and developing novel strategies to protect, repair, and replace lost retinal nerve cells and help them reconnect with the visual brain.

How the Eye Works

The eye focuses light onto a tissue in the back of the eyeball called the retina. About a million optic nerve cells are lining the retina. Each optic nerve cell has a long fibre that connects a point on the retina to a corresponding point in the brain. The optic nerve is a collection of about a million of these fibres. Light information is processed by the retina and then transmitted via the optic nerve to the brain, where we experience vision.

What Happens in Glaucoma?

In glaucoma, there is damage to the optic nerve head, often caused by increased pressure inside the eye, which leads to degeneration of the fibre of the optic nerve cell, and eventually, death of the optic nerve cell. Once those optic nerve cells die, that point on the retina is no longer connected to the brain, and that disconnected area forms a visual field defect. So as the disease progresses, more and more nerve cells become disconnected, leading to vision loss.

How Can Vision Be Restored?

Current glaucoma treatments focus on preserving vision, but we have no current treatments to restore vision. The researchers are pursuing two major goals that are both necessary for vision restoration:

  1. Developing a strategy for optic nerve cell transplantation, and
  2. Developing neuroprotective therapies for glaucoma.

Transplanted optic nerve cells need to survive, regenerate, and connect to the correct area of the brain in order for vision to be restored.

Next Steps

The researchers are working to develop therapies that will improve the function of injured-but-not-yet-dead optic nerve cells, improve the survival of transplanted optic nerve cells, and halt the progression of vision loss from glaucoma. They have already identified several exciting options to improve optic nerve cell survival. The researchers are now working on improving optic nerve cell transplantation and planning the next steps to translate these techniques to the clinic.


Article by Derek Welsbie, MD, PhD, Assistant Professor of Ophthalmology at the Shiley Eye Institute, University of California, San Diego and a principal investigator in the Catalyst for a Cure Vision Restoration Initiative.



Previous Next